Voies hivernales de transport des éléments nutritifs dans l’estuaire moyen du St.-Laurent

Cynthia Bluteau

Co-auteurs: P.S. Galbraith, D. Bourgault, J.-É. Tremblay, et V. Villeneuve

12 novembre 2019
Inaugural Odyssée St-Laurent field campaign
February 2018

Context:

- Turbulence profiling VMP-500 & CTD-Rosette
- Other sampling (sediments, plankton nets, CTD, and ice)

Water SS figures from Cyr, Bourgault, Galbraith, and Gosselin. 2015. JGR
Inaugural Odyssée St-Laurent field campaign
February 2018

- Turbulence profiling VMP-500 & CTD-Rosette
- Other sampling (sediments, plankton nets, CTD, and ice)

Water SSFigures from Cyr, Bourgault, Galbraith, and Gosselin. 2015. JGR
Nutrient supply in the St-Lawrence’s lower estuary fairly well documented during summer.

Nutrient input from upstream?

Tidal forcing

High tide at Tadoussac

The barotropic tidal currents forced on the sill cause vertical displacements and internal tides generation.

Nitrate upwelled towards the strong mixing zone.

F ~ 95 mmol m⁻² d⁻¹

Colour is qualitative nutrient concentrations

Figures from Cyr, Bourgault, Galbraith, and Gosselin. 2015. JGR
Sampling was temporally-limited

◁ CTD-Rosette (in-situ water) ○ Turbulence
Turbulence operations to estimate vertical fluxes of nutrient and oxygen

\[\text{Flux} = -K \frac{\partial C}{\partial z} \]

- **K** diapycnal mixing
- **\(\frac{\partial C}{\partial z} \)** background gradient

Sampling & analysis

- VMP-500 microstructure shear + CTD (temperature & salinity)
- CTD — oxygen, salinity, temperature
- In-situ water — nitrite, nitrate, silicate, phosphate
Nutrient concentrations correlated with salinity as nutrient-rich river water enters the estuary

Bluteau, Galbraith, Bourgault, Tremblay, & Villeneuve, in prep.
Nutrient concentrations correlated with salinity as nutrient-rich river water enters the estuary

Bluteau, Galbraith, Bourgault, Tremblay, & Villeneuve, in prep.
Water becomes progressively saltier towards the Gulf except at the the head.
Subsurface nutrient minima in lower estuary and upwelling at the head

Bluteau, Galbraith, Bourgault, Tremblay, & Villeneuve in prep.
Surface nutrients a few weeks later during heli survey missed the upwelling event at HLC
Nutrient fluxes highest near the head

Max $F_N = 4 \text{ mmol/(m}^2\text{d)} \times 10$ at HLC

HLC area 10% of lower estuary (100-m isobath)
Winter nutrient fluxes compared to summer at the HLC

“Tidally-averaged” summer
$F_N \approx 40 \text{ mmol/(m}^2\text{d)}$

Context
Sampling & analysis
Results
Summary
Winter nutrient fluxes compared to summer at the HLC

X-sectional averaged using $\approx 0.2 \text{ mmol/(m}^2\text{d)}$ outside HLC

- 2h before high tide $F_N \approx 0.6 \text{ mmol/(m}^2\text{d)}$
- Max at high tide $F_N \approx 10 \text{ mmol/(m}^2\text{d)}$
Fluvial input can create the nutrient inventory but vertical fluxes at HLC are non-negligible

▶ Time/spatially-averaged $F_N \approx 4$ mmol/(m2d)
▶ Fluvial input: $q = 10600$ m3/s at 20 mmol/m3 into LSLE

Bluteau, Galbraith, Bourgault, Tremblay, & Villeneuve, in prep.
Summary

Fluvial input
\approx 3 \text{ mmol/(m}^2 \text{ d)}

Vertical flux \approx 0.2\text{ to } 4 \text{ mmol/(m}^2 \text{ d)}